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ABSTRACT

The differentiation matrix for a spline-based wavelet basis will be constructed.

Given an n-th order spline basis it will be proven that the differentiation matrix is

accurate of order 2n + 2 when periodic boundary conditions are assumed. This high

accuracy, or superconvergence, is lost when the boundary conditions are no longer

periodic. Furthermore, it will be shown that spline-based bases generate a class of

compact finite difference schemes.
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1 Introduction

The use of wavelets as a basis set for the numerical solution of partial differential

equations (PDE's) is a very active area of research. Wavelets, Daubechies or Spline-

based, provide a very convenient structure for dividing information according to the

frequency of the information at a given location. This splitting of the data by pro-

jecting onto a wavelet basis seems ideal for the solution of nonlinear PDE's where

shocks or high frequencies might exist in a small portion of the domain, whereas in

the remainder of the domain the solution might be comprised of very low frequency

information.

In this paper the goal is to understand the character of a spline-based wavelet

numerical method. Numerical results for such a method can be found in [12] and

[6]. This understanding will be found through the differentiation matrix. In [4]

the differentiation matrix was found for Daubechies wavelets with periodic boundary

conditions, and a very high degree of differentiation accuracy known as superconver-

gence was proven to exist. Furthermore, it was seen that a Daubechies-based wavelet

method corresponds to a finite difference method with grid refinement in regions

where small scale data is present. In the more complicated scenario where periodic

boundary conditions are no longer assumed, it was seen in [5] that the superconver-

gence is lost.

In this paper the differentiation matrix for a spline-based wavelet basis with peri-

odic and nonperiodic boundary conditions will be constructed. It will be proven that

a spline-based wavelet basis, also, displays superconvergence when periodic boundary

conditions are assumed. Furthermore, the superconvergence is lost when periodicity

is no longer assumed. In addition, it will be seen that spline-based wavelet methods

generate a class of compact finite difference schemes.

Recall that the differentiation matrix is comprised of three matrices, D = eDC:

* The first matrix C is the quadrature matrix which maps from point values of a



function to the approximate scaling function coefficients at the finest scale.

e The second matrix D maps from the scaling function coefficients of a function

to the scaling function coefficients of the derivative of the same function. For

convenience, I will henceforth refer to this matrix as the 'derivative projettidn'

matrix.

e In this paper the third matrix is the inverse of the first matrix: = C-'.

This paper is organized as follows:

1. Introduction

2. Definitions and Framework:

Aliasing is reviewed.

3. Multiple Scale Wavelet Decompositions:

Wavelet methods use information at many scales, but all properties of wavelet-

based differentiation are dictated by differentiation in the finest scale approxi-

mation subspace, Vo.

4. Differentiation in a Wavelet Subspace:

Here we begin to develop the relations needed to build the differentiation matrix.

5. Theoretical Accuracy:

In this section the theoretical accuracy will be proved. For a spline-based

wavelet basis using an n-th order spline and assuming periodic boundary con-

ditions, differentiation is accurate to order 2n + 2.

6. Equations for Finite Dimensions:

In finite dimensions all wavelet operations can be written in matrix form. In

this section, the matrix equations will be derived which will hold for arbitrary

boundary conditions.
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7. Examples with Periodic Boundary Conditions:

Explicit differentiation matrices for the n = 1 and n = 3 spline-based wavelets

will be given for periodic boundary conditions.

8. Examples with Nonperiodic Boundary Conditions:

Again, explicit examples are given. The most important point to note in this

section is the loss of superconvergence at the boundaries.

9. Loss of Superconvergence:

The very important issue of the loss of superconvergence when nonperiodic

boundary conditions are imposed is explored.

10. Conclusion:

The role of aliasing is noted in determining the order of accuracy of V. It was

shown in [4] that Daubechies-based wavelet methods have a strong relationship

with ordinary finite difference methods. In this paper, a strong relationship

between spline-based wavelet methods and compact finite difference schemes has

been exposed. Furthermore, superconvergence is lost when boundary conditions

other than periodic boundary conditions are imposed.
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2 Definitions and Framework

Please note that the framework, definitions, and even much of the notation in this

paper come from a paper by M. Unser and A. Aldroubi, see [10].

2.1 Fourier Transforms

Let us set once and for all the definitions of the Fourier transform and the semi-

discrete Fourier transform used in this paper. The Fourier transform of f(z) E L2(R)

is,
/(•)~ -/ fj(z)etxdzT,(I

and its inverse is,

f(X) 1 • 0 121 f()e-•=d. (2)

The semi-discrete Fourier transform (SDFT) of f, E 1•(Z) is,

f()- = , eikfk, (3)

and its inverse is,

fk (4)

2.2 B-Splines

All B-splines in this paper are central B-splines: centered at 0. The B-spline of

order n is denoted by #"'(x). All splines of order n, denoted by S'n(z), are a linear

combination of B-splines of order n, see [7] and [8]:

S (X)= ZC# (z - k), (5)
k

and the space spanned by splines of order n is denoted by S". The B-spline #°(x) is

the box function, which is 1 for x E [-1/2,1/2] and zero otherwise. All B-splines of

higher order are generated from P°(x):

#" = (x,)-(), (6)
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where 'Y' denotes the convolution operator. Other useful forms of this equation are,

)= •(7)

and

#2n+=(X) L0 r(y)M'(x -y), (8)

and finally,
#2n+l(x) =< f",#"(x -. )>, (9)

where for f,9 E L 2(R),

< f,g >=- f(z)g(x)dx. (10)

We will, also, need the samples of B-splines at the integers:

In order to use B-splines to corstruct a multiresolution analysis it is necessary

that contractions and expansions of n-th order B-splines also be contained in Sn.

This is only true when n is odd, which is, therefore, assumed for this paper.

2.3 Fourier Transforms of B-Splines

From equation (6) we see. that the Fourier transforms of B-splines are generated

recursively. That is, the Fourier transform of a convolution is the product of the

Fourier transforms of the convolved functions, Therefore, the Fourier transform of a

B-spline is,

= sinc"+'(.), (12)

where sinc(4) - and is the Fourier transform of #'(x).

2.4 Aliasing and Fourier Transforms

The relationship between the Fourier transform and the semi-discrete Fourier trans-

form and the role of aliasing is at the heart of a proof that will be given later in this
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paper. Therefore, I will reconstruct the straightforward algebra leading to aliasing

using notation defined above.

Let Rh be the samples of #*(z) as defined above:

b -5 = (k) -= inV L 0 te- . (13)

Break the integral up as follows:

1 f((.+1)lr (14)
r=-oo J(2r-))-

which is equivalent to,

bk E f . .(£ + 2rr)e-'Cd4, (15)

where I have used the fact that 1 e-i . If we compare this expression with

definition (4) we see that,

+= (+ r), (16)

which illustrates the aliasing of frequencies C + 27rr onto frequency •.

2.5 Spline-Based Wavelet Bases

As mentioned above, the subspace of n-th order splines, Sn, is spanned by n-th order

B-splines. The following theorem will define the scaling functions for a spline-based

wavelet basis, see [11]:

Theorem: The set of functions {•n(z - k) : k E Z) with

oo

is a basis of Sn provided that the sequence {p} is an invertible convolution operator

from 12 into itself.

The sequence {p} is chosen such that the scaling function satisfies whatever prop-

erties are specified. That is, one can specify that the scaling functions and wavelets

be orthogonal which places restrictions on {pj. There are many ways to define the
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scaling function, but in this paper it will be seen that in the calculation of the dif-

ferentiation matrix that the sequence {p} will 'divide out' producing a result which

holds for all spline-based wavelet bases produced using the current framework.

Throughout the paper I will use the notation 4k(x) to denote translation of e"(z)

by k:

0'(x) = 0-(x - k). (18)

Define the dual of 0", 4', as

k=oo"()= Z rk13"(z - k), (19)

where the sequence {r} is chosen such that

4k =< ýo, k >. (20)

Later the relationship between {r} and {p} will be made precise. However, as men-

tioned above, {p} and {r} will have no affect on the differentiation matrix.

The wavelet is defined as,

00

0"(x) = qk'•(x -- k), (21)
k=-oo

and its dual is
00

E= • s,/f"(a- k), (22)
k=-oo

where ý is the 'B-spline wavelet'. For this paper this B-spline wavelet is not needed

and will not be dealt with, see [10]. Furthermore, as with the scaling function, the

sequences {q} and {s} defining the wavelet and its dual will be of no consequence in

the calculation of the differentiation matrix.

This completes the definitions and framework.

7



3 Multiple Scale Wavelet Decompositions

One of the underlying strengths of a wavelet decomposition is that it is possible to

easily decompose a function, or signal, into its components at various scales. To

illustrate, suppose that we are restricted to a finite number of dimensions, say d.

Denote the finest scale approximation subspace by V0, and the coefficients of the

expansion in V0 by g. A usual wavelet decomposition would appear as,

Vo = Wi E W2 E ... E WJ E VJ, (23)

where, as is customary, Wj denotes the wavelet subspace at scale j. A function

projected onto the above subspaces would, therefore, be represented by d coefficients,

say . Under the assumption of finite dimensionality, there will be an invertible matrix

mapping from 8 to C:

c = ps.

That is, if g(z) E Vo with the expansion,
d-1

g(x) = •S!0,b?(x), (24)
i=O

and one projects into V/ and W, by,

d/2-1 d-I
Nv g (X) = E E S 9 < A0, 0-il > ¢(X), (25)

j--O i=0

and
d/2-1 d-I

lNq,•(X) = E F'39 < opi, -1 > 0!(X), (26)

j=O i=O

then the matrix form of the above linear transformations is denoted P:

ii = < 40, 0i >,(27)

and

Pd/2+j,i =< O°, 0j, (28)

for i = 0,..., d- I and j =O,...,d/2 - 1.
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Suppose, now, that we have found the matrix D mapping from S- to 9, where 9

represents the coefficients of the approximation in Vo of the derivative of a function.

Of course, no one would choose to work with wavelets and stop the decomposition

in the subspace V0 . The matrix D does, however, characterize differentiation in any

combination of wavelet subspaces, and the coefficients c' can be found from,

6 = PDP-1 . (29)

To restate, D dictates the character of wavelet differentiation. The primary con-

cern in this paper is to understand D. Therefore, the remainder of this paper will

not mention wavelet decompositions at multiple scales.
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4 Theoretical Accuracy

The accuracy of the spline based differentiation matrix can be proved by observing

the behavior of the semi-discrete Fourier transform of

dq =< ýo, ý, > (30)

near = 0. It will be shown that the Taylor series of d(e) about e = 0 is of the form,

d() = ig + 0(2+3) + ... (31)

and this implies accuracy of order 2n + 2.

4.1 The Semi-Discrete Fourier Transform of {d}

As above, define dq as,
dq =< 4 1o, ,q>, (32)

and recall from the previous section that this is,

dq = E pirn. j #'(z - m)f'r(x - l- q)dx. (33)
I'm

Again, note that as of now all summations and integrals are from -oo to oo allowing

one to shift summations and integrals without changing the limits,

dq = pr,, J #'"(x)fo(z + m - I- q)dz. (34)
i,m

Let us rename this integral as,

at+,-. =J ]"(z)p(x + m - I- q)dx, (35)

which yields the following expression for d.,

dq = >2pirmai+,-m. (36)
Im

Break apart the double summation,

dc, = >pt r,mal+q-,, (37)
I 1
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and shift the index 1,

d,= p,-q ,:m.,-.. (38)

Let the superscript ' denote time reversal of a sequence to get,

d, -Ip'F, r.m at-m. (39)

We see that the right-hand side is a double convolution. We can, therefore, use the

convolution theorem to get,

() = (; ((0) (. (40)

Recall from the previous section that the following expression for ,(ý) was found:

r = (I(Cb 2 U+I())-. (41)

Using this expression for ý(C) in the expression for i(f) we get,

() = (42)
b2ft+l C

The next two subsections wil derive a(f) and b(C). After these two expressions

are found the proof of accuracy will begin.

4.2 The Semi-Discrete Fourier Transform of {a}

Define the projection of the derivative of a B-spline onto a B-spline as,

a(X) = r •(y)#"(y - z)dy. (43)

Recalling that,

f(W) = iff(f), (44)

and from the convolution theorem, see the introduction, we get the Fourier transform

of a(z),

^(t) = i~sinc2 +'2(t). (45)
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The sequence a. is defined as the samples of a(z) at the integers,

a. = J I"(x)#'(x - p)dx. (46)

The semi-discrete Fourier transform of a. is, due to aliasing (see the introduction),

a(4) = i F (t + 2wr)sin,?+ 2'( + 2wr). (47)

.4.3 The Semi-Discrete Fourier Transform of {b}

Recall that the samples of the B-spline #24+I(z) are found from,

J14+ = f ()( - k)dz. (48)

We know the Fourier transform of #2"+ (z) from the introduction:

02",+'(t) = jinCU+2(t). (49)

Also, from the introduction we know how to get the semi-discrete Fourier transform

of b;"+l from A2u+1(I

00 22t

+s= inc"+s(. + 2wq). (50)
q=-00

The semi-discrete Fourier transforms h(t) and k(e) will now be used in the proof

of accuracy.

4.4 Proof of Accuracy

The proof of superconvergence begins by first proving two lemmas.

Lemma A: The series,

00

Si~)= IIsineb,+2(f + 2Tq), (51)
q-00

is an even function of t and has a Taylor series about • = 0 of the form,

.1• + -- c,• t2 + -C2 -. .... (52)
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Proof: Using the definition of a sinc function we get,

Ssin 2'=+2(f + 21rq)
S1(•) =-0o (f + 21rq)21+ 2  (53)

We can simplify the numerator since sin(f) is periodic with period 2r,

Si(f) = 00 s 2-+2" (54)
q=-oo (f + 21rq)

2 1+2

To show that si(f) is even first let q = 0 to get,

sin2fl+ 2 (•)

f2n+2 = (1 - 1/6q2 + 1/120O4 + ... )2n+2, (55)

which is even. Now, sum the terms for q = -1 and q = 1,

= sin2n+2(f) sin 2n+2(W)

(f + 2,x)2n+i + ({_ 2r)2 .+2 , (56)

to get,

g(f) = g(-•). (57)

Matching every term with positive q with every term with negative q we see that

si (f) is an even function.

We can see from equation (55) that the first few terms in the Taylor series when

q = 0 are 1 + c1 f2 + c2f4 + .... On the other hand, when q 0 0 each term in the

summation is of the form,

Pit' = sin2n+2W(()
or•) = (• + 21rq) 2n+ 2  (58)

or

(f + 21rq) 2n+ 2P(f) = sin 2n+ 2(f). (59)

Using the series expansions of these expressions we get,

(a1 + a 2f + a3f2 + ...)P(f) = (f - f3 /6 + f5/120 + ... )2n+2 (60)

or

(al + a2f + a3f2 + ...)P(f) = f 2n+2 + h.o.t. (61)
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This implies that,

P(C) = o(f""+) + h.o.t. (62)

That is, all terms in s.(f) with q # 0 contribute terms O(42n+ 2), and therefore, all

low order terms come from equation (55). This yields the desired result. //

Lemma B:

The series,
00

32(f) = . ruin"'+2(C + 2wr), (63)

is an odd function of C and has a Taylor series about C = 0 of the form,

92(f) = alf'C 3 + .... (64)

Proof: First of all, due to the 2v periodicity of sin(C), 32(C) becomes,

CO sin 2* 2 (f)
82(f)= r65

==-oo (f + 2-rr)2+. (65)

Note that the r = 0 term in this sum makes no contribution to 32(4). Now, note that

each term in the sum has the following form,

r)=rsin2n2(6
f(C•") = 7(C + 2wr)2+2' (66)

and, consequently, the function g(C, r) defined as follows is an odd function of C:

g(C, r) = f(r',) + f(,,-r) = -(f(-C,,r) + f(- r,-,)) (67)

This implies that 82(C) is an odd function of C since,

82(C) = g(, r). (68)
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Therefore, the Taylor series of 32(f) about f = 0 must contain only odd powers of C.

Consider, now, a typical term of s2(f) for r 3 0,

p(f)= sin 2 (*+(()
() + 2rr)2.+2 (69)

Rewrite this to get,

(f + 2irr) 2 +2 P(f) = sin2n+2 (f). (70)

Note that the binomial on- the left-hand side contains all powers of C, and that

sin 2n++2 (C) contains only even powers of f starting with the term f2"+2:

(Co + cIf + c242 + ...)P(f)= 42n+ 2 + dl,9+ +... (71)

We see now that the first term of P(f) must be ,2%+2 /co, but this term will also

multiply the cif term in the binomial expression requiring that P(C) have as a second

term cgiU2R+3 where al = -ci/(cg). The point is that there exist a nonzero term with

power 2n + 3 in the polynomial P(f).

That is, in general the series expansion of the function f(C, r) about C = 0 contains

all powers p of f with p _> 2n + 2, and when added to f(f, -r) the even powers of

must cancel leaving as the first term the term with the power 2n + 3. That is,

32(4) = af 2n+3 +... (72)

This is the desired result. //

Theorem: The semi-discrete Fourier transform of the sequence d, has a series

expansion about C = 0 of the following form:

d(C) =if + C (C,2 +3) +

Proof: Recall that the semi-discrete Fourier transform of {d} is,

6(f) (73)
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Now, substitute in tme previously deived expreulam fa &(f) and &r43(f) to SCt,

) = M._(f + 2ui),nc .+2 ( + 2 rq ) (74)

Multiply both sides by the denominator to get,

'(C) , uinc•'+'(C + 2rq) =i (f + 2rr)8iC3%+2 2 (C + 2ir), (75)

and combine similar terms to get,

CO

('1() - 0 iC ic' 2 C r)=2 rainc'"'(f + 2wr). (76)
9=-00T=0

Now, apply the results from Lemmas A and B to get,

(j(f) _ g)(I + C•f + ...)= , +3 + ... (77)

This equation implies the desired result,

if= + O( ) + .. (78)

This completes the proof./

This proves that the sequence {d) differentiates with accuracy 2n + 2, and, conse-

quently, the differentiation matrix containing the periodic version of {d) as its rows

will differentiate with accuracy 2n + 2.

The next section will p-ovide explicit examples of the differentiation matrices for

the first and third order B-splines. Also, the accuracy will be shown computitionally.
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5 Equations for Finite Dimensions

The equations that will be derived in this section will hold for any spline-based wavelet

basis defined on a finite-dimensional domain. This includes the equations for both

periodic and nonperiodic boundary conditions. Note that in this section all summa-

tions are from 0 to d - 1, and consequently the summation limits will often not be

shown.

5.1 Quadrature

Let g(z) denote the projection of f(x) E L2(R) in V0:

d-1

g(z) = Pv.f(z) = E8101(z), (79)
1=0

where

S, =< f,, >. (80)

Note that in this section the notation b,.(z) will be used to denote the B-spline

basis functions. For periodic boundary conditions one could have simply used P(x -

m), but for nonperiodic boundary conditions the basis functions near the boundary

are truncated B-splines. The notation used here is, therefore, general enough for both

periodic and nonperiodic problems. That is, for a nonperiodic domain bo(z) will be

only the right-hand portion with support width 1 of the B-spline being used. Now,

using the B-spline expansion of the scaling function in equation (79) we get,

g(x) = 8S•pI,,,,b,(z). (81)
I m

Combine the summations,

g(-) = S.IpI,,nbm(X), (82)
Im

and sample g(x) at the integers to get,

g(k) = 1sipI,mbi(k), (83)
1,m
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* - - . ..- j, . ..

or simply,

=•, - av,..b.. (84)
I,,.

Group the terms as,

Yk= [P,[EhfkalI, (-5)
1 m

and rename the inner group an -y to get,

Yk= X '. (86)

Now, transpose t,

=k EIky'at, (87)

and utilize matrix and vector notation to get,

j = (Pb)T . (88)

This expression is a relationship between the samples of g(x) E Vo and the exact

scaling function coefficients. In general we need a relationship between the samples

of f(z) E L2(R) and an approximate set of scaling function coefficients a,

1= (Pb)TU. (89)

This completes the matrix form of the quadrature formula. The next subsection will

derive the matrix form of the relationship between the scaling function and its dual.

5.2 The Scaling Function and its Dual

Recall once more the relationship between the scaling function and its dual,

6,, =< 0i, j >. (90)

In terms of the B-spline expansions we get,

6,,, =" pi,.ri J b.(z)b,(z)dz. (91)
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Let B denote the matrix form of the above integral. That is, B contains the projec-

tions of the B-splines projected onto other B-splines. The above equation becomes,

6,a = • •[•,iB.A]. (92)
1 "S

Now, rename the expression in the brackets -y to get,

8,o = (93)

Transpose r to get,

6,• = (94)

The above equation has the following matrix form:

I = PBRT (95)

This is the matrix form of the requirement that the scaling function be orthogonal

to its dual under translation. The next subsection will derive the derivative projection

matrix.

5.3 The Derivative Projection Matrix

Recall from an earlier section that the elements of the derivative projection matrix

come from the following inner product:

di,, =< #,,qS >- (96)

Replace the scaling functions with their B-spline expansions to get,

di:, = pi,.jj I L(z)b,(x)dx. (97)
m,3,

Let the matrix A contain the results of the above integration,

d,,= p,,jja,=. (98)
,mJ

Now, group the terms as,

dj,, = F jp,'[ri4Aa,,'], (99)
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and rename the bracketed expression as y to get,

d),, = pi•,•,im,. (100)

Transpose p to get,

dj,, = y i,..pT,,, (101)

and the matrix form of this equation is,

D = RAPT. (102)

This completes the derivation of the derivative projection matrix. The following

subsection will comb ine the results from all the subsections in this section to get the

matrix form of the differentiation matrix.

5.4 The Differentiation Matrix

The differentiation matrix is,
D-- C'DG'-, (103)

where

C - (Pb)T  (104)

From above we found that,

D = RAPT, (105)

and

I- PBRT. (106)

From equation (106) we get,

I= RBTpT. (107)

Solve for R and use the fact the B is symmetric to get,

R = (BPT)- 1. (108)
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Use this expression in equation (105) to get,

D = (PT)-'lB-'APT. (109)

Now, using the expression for the quadrature we get the differentiation matrix,

V -= TPT(PT)-lB-IAPT(PT)-(&T)-', (110)

or

D = bTB-lA(bT)-'. (111)

Let me restate two notational definitions. First, the elements of the matrix 'b' are

b,.,k which denotes sampling basis 'W' at position 'k'. Second, the elements of the

matrix 'B' are f bý,,(z)bk(Z)dx.

Note that in the case of periodic boundary conditions that all three of the ma-

trices b, A, and B are circulant. They, therefore, commute yielding B-'A as the

differentiation matrix.
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6 Examples with Periodic Boundary Conditions

In this section explicit examples for the 1st and 3rd order spline-based wavelet differ-

entiation matrices will be given. First, the accuracy will be illustrated explicitly by

calculating the semi-discrete Fourier transforms for the filters a, b, and d Then the

matrix forms, A, B, and D will be given.

6.1 The Differentiation Matrix for a 1-st Order B-Spline

The first order spline is the convolution of two box functions. It is defined as =

z + 1 for z E [--1,0], 61(z) x 1 - x for x E (0, 1] and 0 otherwise.

6.1.1 The Filters a, b, and J

For the 1-st order B-spline the filters d a-ad b are,

a- 1-1/2,0,1/2), (112)

and

- {1/6,2/3,1/6}. (113)

The filter dis defined such that,

* d = a. (114)

Therefore,
d~)=a(f) (115)

where,

a(f) = isin(f), (116)

and,

3(f) = 1/3(2 + cos(e)). (117)

d(ý) will have the form,

d(t) = it -+- c + hot, (118)
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and must satisfy

(i- + cW) )1/3(2 + cos(t)) = i sin(t). (119)

Consider the first few terms of each series,

(if + cC)1/3(2 + 1-_ t /2 + 4/24 + hot) = -i(t - /6 + t/120 + hot), (120)

or

(it + ct')(1 - t2/6 + f4/72 + hot) -i( - t3/6 + e'/120 + hot), (121)

and finally,

i(t - t3/6) + if 5/72 + W, + hot = _- f/6) + if6/120 + ha, (122)

with the conclusion that

q=5. (123)

This is exactly the requirement for 4-th order accuracy.

6.1.2 The Differentiation Matrix

In matrix form, the filter a is,

o 1/2 0 0 0 0 0 0 0 -1/2
-1/2 0 1/2 0 0 0 0 0 0 0

0 -1/2 0 1/2 0 0 0 0 0 0
0 0 -1/2 0 1/2 0 0 0 0 0

A= 0 0 0 -1/2 0 1/2 0' 0 0 0
o o 0 0 -1/2 0 1/2 0 0 0 (124)

0 0 0 0 0 -1/2 0 1/2 0 0
0 0 0 0 0 0 -1/2 0 1/2 0
o 0 0 0 0 0 0 -1/2 0 1/2

1/2 0 0 0 0 0 0 0 -1/2 0

and the filter E is,

2/3 1/6 0 0 0 0 0 0 0 1/6
1/6 2/3 1/6 0 0 0 0 0 o 0
0 1/6 2/3 1/6 0 0 0 0 0 0
0 0 1/6 2/3 1/6 0 0 0 0 0

B 0 0 0 1/6 2/3 1/6 0 0 0 0
0 0 0 0 1/6 2/3 1/6 0 0 0 (1251
o 0 0 0 0 1/6 2/3 1/6 0 0
o 0 0 0 0 0 1/6 2/3 1/6 0
0 0 0 0 0 0 0 1/6 2/3 1/6

1/6 0 0 0 0 0 0 0 1/6 2/3
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The derivative projection matrix D, which recall is the same as the differentiation

matrix V for periodic boundary conditions, is

D = B-A. (126)

A 10 by 10 version of the derivative projection matrix for the current scenario is,

0 .804 -. 215 .057 -. 014 0 .014 -. 057 .215 -. 804
-. 804 0 .804 -. 215 .057 -. 014 0 .014 -. 057 .215
.215 -. 804 0 .804 -. 215 .057 -. 014 0 .014 -. 057

-. 057 .215 -. 804 0 .804 -. 215 .057 -. 014 0 .014
D .014 -. 057 .215 -. 804 0 .804 -. 215 .057 -. 014 0

0 '.014 -. 057 .215 -. 804 0 .804 -. 215 .057 -. 014
-. 014 0 .014 -. 057 .215 -. 804 0 .804 -. 215 .057

.057 -. 014 0 .014 -. 057 .215 -. 804 0 .804 -. 215
-. 215 .057 -. 014 0 .014 -. 057 .215 -. 804 0 .804

.804 -. 215 .057 -. 014 0 .014 -. 057 .215 -. 804 0
(127)

6.2 The Differentiation Matrix for a 3-rd Order B-Spline

The 3-rd order B-spline is the convolution of two 1-st order B-splines. The (non-

normalized) 3-rd order B-spline is defined as, #3 (X) = (x + 2)3 for x E [-2, -1),

#?3(X) 4 - 6z 2 - 3X3 for x E [-1,0), 633(x) = 4 - 6X2 + 3X3 for z E [0,1),

# 3(X) = (2 - z) 3 for X E [1,21, and 0 otherwise.

6.2.1 The Filters a, b, and d

The explicitly calculated filters for the 3-rd order B-spline are,

a = {-1/20,-14/5,-49/4, 0, 49/4, 14/5,1/20}, (128)

and

f {1/140,6/7,1.191/140,604/35,1191/140,6/7,1/140}. (129)

Normalization is not necessary since the filter a is divided by the filter •. The

semi-discrete Fourier transforms are,

a(ý) = i(49/2sin(C) + 28/5sin(2C) + 1/10sin(3C)), (130)
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and

7(f) -= 604/35 + 1191/70cos(f) + 12/7cos(2e) + 1/70cos(3f). (131)

Again, the semi-discrete Fourier transforms are related by,

b7()j() = a(f). (132)

In a manner analogous to the previous subsection, we equate powers in the Taylor

series of the semi-discrete Fourier transforms and come to the conclusion that,

dj() = i. + c49 + hot. (133)

This is precisely the condition that is required for 8-th order accuracy.

6.2.2 The Differentiation Matrix

The matrices for the filters a and b are,

A =(134)

0 49/4 14/5 1/20 0 0 0 -1/20 -14/5 -49/4
-49/4 0 49/4 14/5 1/20 0 0 0 -1/20 -14/5
-14/5 -49/4 0 49/4 14/5 1/20 0 0 0 -1/20
-1/20 -14/5 -49/4 0 49/4 14/5 1/20 0 0 0

0 -1/20 -14/5 -49/4 0 49/4 14/5 1/20 0 0
0 0 -1/20 -14/5 -49/4 0 49/4 14/5 1/20 0
0 0 0 -1/20 -14/5 -49/4 0 49/4 14/5 1/20

1/20 0 0 0 -1/20 -14/5 -49/4 0 49/4 14/5
14/5 1/20 0 0 0 -1/20 -14/5 -49/4 0 49/4
49/4 14/5 1/20 0 0 0 -1/20 -14/5 -49/4 0

and

B =(135)

604/35 1191/140 6/7 1/140 0 0 1/140 6/7 1191/140
1191/140 604/35 1191/140 6/7 1/140 0 0 1/140 6/7

6/7 1191/140 604/35 1191/140 6/7 1/140 0 0 1/140
1/140 6/7 1191/140 604/35 1191/140 6/7 1/140 0 0
0 1/140 6/7 1191/140 604/35 1191/140 6/7 1/140 0
0 0 1/140 6/7 1191/140 604/35 1191/140 6/7 1/140

1/140 0 0 1/140 6/7 1191/140 604/35 1191/140 6/7
6/7 1/140 0 0 1/140 6/7 1191/140 604/35 1191/140

1191/140 6/7 1/140 0 0 1/140 6/7 1191/140 604/35
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The derivative projection matrix is

D =B A,

or,

D (136)
0 .938 -. 387 .184 -. 078 0 .078 -. 184 .387 -. 938

-. 938 0 .938 -. 387 .184 -. 078 0 .078 -. 184 .387
.387 -. 938 0 .938 -. 387 .184 -. 078 0 .078 -. 184

-. 184 .387 -. 938 0 .938 -. 387 .184 -. 078 0 .078
.078 -. 184 .387 -. 938 0 .938 -. 387 .184 -. 078 0

0 .078 -. 184 .387 -. 938 0 .938 -. 387 .184 -. 078
-. 078 0 .078 -,184 .387 -. 938 0 .938 -. 387 .184
.184 -. 078 0 .078 -. 184 .387 -. 938 0 .938 -. 387

-. 387 .184 -. 078 0 .078 -. 184 .387 -. 938 0 .938
.938 -. 387 .184 -. 078 0 .078 -. 184 .387 -. 938 0
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7 Nonperiodic Boundary Conditions

In this section the differentiation matrix will be given for one particular boundary

construction. The construction considered here is one of trumcated B-splines. That

is, away from the boundaries one simply shifts the B-splines by one to generate a

spline basis. At the boundaries we simply continue this shifting. If part of the B-

spline goes beyond the domain then simply truncate. This construction maintains

the approximation properties of the spline subspace. That is, any n-th order spline

can be generated across the domain using n-th order B-splines truncated in this way.

7.1 1st Order Spline

Using the boundary construction outlined in the previous paragraph and the 1st order

B-spline one gets the following matrices:

-1/2 1/2 0 0 0 0 0 0 0 0
-1/2 0 1/2 0 0 0 0 0 0 0

0 -1/2 0 1/2 0 0 0 0 0 0
0 0 -1/2 0 1/2 0 0 0 0 0
0 0 0 -1/2 0 1/2 0 0 0 0 (137)
0 0 0 0 -1/2 0 1/2 0 0 0
0 0 0 0 0 -1/2 0 1/2 0 0
0 0 0 0 0 0 -1/2 0 1/2 0
0 0 0 0 0 0 0 -1/2 0 1/2o 0 0 0 0 0 0 0 -1/2 1/2

and the matrix B is,

1/3 1/6 0 0 0 0 0 0 0 0
1/6 2/3 1/6 0 0 0 0 0 0 0
0 1/6 2/3 1/6 0 0 0 0 0 0
0 0 1/6 2/3 1/6 0 0 0 0 0

B 0 0 0 1/6 2/3 1/6 0 0 0 0 (138)
0 0 0 0 1/6 2/3 1/6 0 0 0
0 0 0 0 0 1/6 2/3 1/6 0 0
0 0 0 0 0 0 1/6 2/3 1/6 0
0 0 0 0 0 0 0 1/6 2/3 1/6
0 0 0 0 0 0 0 0 1/6 1/3

Previously it was shown that the differentiation matrix has the form,

V = bTB-'A(bT)-1. (139)
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Grid Inner Error Boundary Error Total Error
Size 11 Error Ratio 1I Error Ratio 11 Error Ratio
16 6.6c -4 .025 .0049
32 3.4e` 19.4 .013 1.9 .0012 4.1
64 Me' 16.2 .0069 1.9 3.0e-4 4.0
128 1.3e- 16.2 .0035 2.0 7.T- 4.0
256 8.3e-" 15.7 .0018 1.9 1.9e- 3.9

Table 1: Calculated order of accuracy for a 1st order spline-based wavelet differenti-
ation matrix for truncated B-spline boundary construction.

For n = 1 the matrix b is the identity.

7.1.1 Computed Accuracy

Again, one can estimate the order of accuracy by applying the above defined matrix

D to evenly-spaced samples of the function

2 + sin(x)' (140)

and comparing to the exact derivative.

In table (7.1.1) 'Inner Error' denotes the error at the middle 50% of the grid

points, and the boundary error is the error at the two outermost grid points at each

end of the interval. From the table it can be seen that the superconvergence is lost at

the boundaries. That is, in the middle of the interval the 4th-order superconvergence

is obtained, whereas at the boundary the differentiation is only 1st-order accurate.

7.2 Example for 3-rd Order Spline

For the 3rd order B-splines the calculations are similarly straightforward. There is,

however, one problem: the matrix b is ill-conditioned. We need the inverse of b and

for grids larger than about 32 points the errors introduced by inverting b make it

very difficult to determine the accuracy. One can avoid this problem when testing

accuracy by simply not including b in the calculations. That is, b comes from the

quadrature equations and plays no role in the differencing. The following are the

matrices A and B produced by the truncated B-spline boundary construction:
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A =(141)

-1/2 -9/20 9/10 1/20 0 0 0 0 0 0
-71/20 -8 87/10 14/5 1/20 0 0 0 0 0
-19/10 -127/10 -1/2 49/4 14/5 1/20 0 0 0 0
-1/20 -14/5 -49/4 0 49/4 14/5 1/20 0 0 0

0 -1/20 -14/5 -49/4 0 49/4 14/5 1120 0 0
0 0 -1/20 -14/5 -49/4 0 49/4 14/5 1/20 0
0 0 0 -1/20 -14/5 -49/4 0 49/4 14/5 1/20
0 0 0 0 -1/20 -14/5 -49/4 1/2 127/10 19/10
0 0 0 0 0 -1/20 -14/5 -87/10 8 71/20
0 0 0 0 0 0 -1/20 -9/10 9/20 1/2

B = (142)
1/7 129/140 3/7 1/140 0 0 0 0 0

129/140 302/35 531/70 6/7 1/140 0 0 0 0
3/7 531/70 599/35 1191/140 6/7 1/140 0 0 0

1/140 6/7 1191/140 604/35 1191/140 6/7 1/140 0 0
0 1/140 6/7 1191/140 604/31 1191/140 6/7 1/140 0
0 0 1/140 6/7 1191/140 604/35 1191/140 6/7 1/140
0 0 0 1/140 6/7 1191/140 599/35 531/70 3/7
0 0 0 0 1/140 6/7 531/70 302/35 129/140
0 0 0 0 0 1/140 3/7 129/140 1/7

7.2.1 Computed Accuracy

If we apply the matrix V = B-1 A to the evenly-spaced samples of the function

1

2 + sin(fz)' (143)

for a fixed wave number f it is difficult to determine the accuracy both at the bound-

aries and in the middle of the interval at the same time. That is, it was proven that

the accuracy 'in the middle' is 2n + 2 or 8 when n = 3. For the current boundary

construction, however, the accuracy is 3 at the boundaries. This vast difference in

accuracy requires that the frequency of the test function be low in order to test the

boundary acsra.cv and high in order to test the superconvergence in the middle of

the interval.

In table (7.2.1) the wave number is = 2,x. This wave number is sufficiently high

to test the superconvergence.

"D= B-'A (144)
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Grid Inner Error Boundary Error Total Error
Size 11 Error Ratio 11 Error Ratio 11 Error Ratio
16 3.5e-4 .022 .0037
32 1.8e-T 1944=2°'"9 6.6e-' 33.3=2" 5 . 75.5 =
64 2.4e" 750 = 2P- 3.5e-' 18.9 = 24"' 1.3e` 37.7 = 2"
128 7.4e- 3  324 = 2!'3 2.8e-6 12.5 = 2V- 26. = 4.T

256 4.3e-s' 172 = 2TA 3.1 e- 9.0 =--- 2 2.7e-s 18.1 =

Table 2: Calculated order of accuracy for a 3rd order spline-based wavelet differen-
tiation matrix for the truncated B-spline boundary construction. The test function
has a high frequency in order to capture the 8th order differentiation accuracy.

Grid Inner Error Boundary Error Total Error
Size 11 Error Ratio 11 Error Ratio 11 Error Ratio
16 1.6e -_ 1.8e- _ 2.7c 7

32 41e-11 390=28'. 3 5.1=22"4 2.3e 11.7 = 23'6

64 8.9e-'5 4607 = 212.2 5.j1 e-5 6.9 22- 1.7e-9 13.5 = 2- 3

128 4.6e-' 5  6.8e-9 7.5 -- 2 .9_lle-__
256 8.2e- ___8.8e-_° 7.7 -- 22. 7.4e-
512 1.8e-_ 1._e-°

Table 3: Calculated order of accuracy for a 3rd order spline-based wavelet differen-
tiation matrix for the truncated B-spline boundary construction. The test function
has a low frequency in order to capture the 3rd order differentiation accuracy.

Now the lower frequency f = I is used to test the accuracy at the boundaries. See

table (7.2.1). Note that in table (7.2.1) that a few of the entries in the 'Error Ratio'

columns are blank. This is done whenever the 'Inner Error' is of the order I0'- and

can no longer be resolved on the computer. Table (7.2.1) indicates the accuracy only

at the boundaries. As in table (7.2.1) it can be seen that the boundary accuracy is

3rd order and, consequently, the superconvergence is lost at the boundaries.

The next section contains a few comments on this loss of superconvergence.
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8 Loss of Superconvergence

In [51 it was shown that under a given boundary construction the Daubechies-based

wavelet superconvergence which was proved in [4] is lost. In this paper we have

encountered a similar phenomenon. I believe that this in not simply a function of

the the particular boundary functions which were chosen but a general characteristic

for numerical methods which are based on approximation by translation. In fact,

Gottlieb, et. al, see [3], have shown that the superconvergence encountered in the

finite element method under periodic boundary conditions cannot be recovered when

nonperiodic boundary conditions are present: '... no matter how the approximating

subspace S' is chosen, the superconvergence property is lost if there are characteristics

leaving the domain.'

Superconvergence is a property which depends on the overlap of bases functions

with neighboring bases functions. At the boundaries the overlap only occurs on one

side. For a Daubechies-based wavelet system where the bases functions are orthogonal

there is a minimum amount of overlap which must occur at the boundary in order

to maintain the superconvergence. That is, for a Daubechies 4 wavelet, 4-th order

differentiation accuracy is encountered. In order to maintain the superconvergence

one must have at least 3rd order differentiation accuracy at the boundaries. That is,

four conditions must be satisfied requiring an overlap of four basis functions at the

boundary. As of now, there are no boundary constructions satisfying this criterion.

For spline-based wavelet systems the situation is similar but slightly more compli-

cated since the underlying functions, B-splines, are not orthogonal. Again, however,

a general rule-of-thumb is that the overlap of the B-splines at the boundary should

be the same as the superconvergence encountered with periodic boundary conditions.

That is, for the Ist order B-spline we have shown here that the differentiation is 4th

order accurate where periodic boundary conditions are assumed. This would require

an overlap of 4 boundary functions in order to have 3rd order boundary accuracy

31



which maintains the 4th order ovw&ai accuracy.

The next section concludes this paper.
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9 Conclusion

Let me restate a few of the salient features of this paper. First of all, circularity plays

a prominent role when periodic boundary conditions are assumed. The benefit of

working with circular matrices is that they commute. In the periodic case this implies

that the differentiation matrix is the same as the derivative projection matrix,

VD= C-DC = D.

The proof of superconvergence is, however, the most meaningful result of the pa-

per. I have shown that the matrix D displays accuracy of order 2n + 2 where n is

the order of the underlying B-spline used to construct the scaling functions. Also, it

was seen that this accuracy holds regardless of of whether the scaling functions are

chosen to be orthogonal under translation or not. That is, the scaling functions can

be required to be B-splines, C-splines, or orthogonal. The parameters which dictate

the properties of the scaling function 'divide out' when the differentiation matrix is

calculated. Because of this feature, only one theory is necessary to illustrate the ac-

curacy for the spline-based differentiation matrix when periodic boundary conditions

are assumed.

When the boundary conditions are, on the other hand, not periodic it has been

shown that for boundary functions constructed from truncated B-splines that the su-

perconvergence is lost at the boundary. I speculate that this loss of superconvergence

will continue to be a characteristic of wavelet bases defined on an interval.

It is, also, interesting to note the relationship between spline-based wavelet meth-

ods and compact finite difference methods. That is, the underlying character of a

spline-based wavelet method can be understood in terms of compact finite difference

schemes.
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